
Trends
Theory as applied to collective decision-
making by non-human animals fre-
quently assumes that all animals have
equal decision-making abilities and
access to equal-quality information.

Decision theory shows that the optimal
group decision-making strategy is to
weight contributions to group deci-
sions according to the decision accu-
racy or ‘subjective confidence’ of the
contributor.

Human groups have been shown to be
able to combine judgements optimally,
accounting for variations in subjective
confidence.

Collectively deciding animals, particu-
larly groups of cooperative breeders,
have sophisticated vocal communica-
tion abilities and may provide suitable
systems to test theory.

The time taken to reach a decision, or
hesitancy, provides a link between
optimal individual decision-making
and optimal group decision-making,
and may easily be evaluated by
individuals.
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Group-living species frequently pool individual information so as to reach
consensus decisions such as when and where to move, or whether a predator
is present. Such opinion-pooling has been demonstrated empirically, and
theoretical models have been proposed to explain why group decisions are
more reliable than individual decisions. Behavioural ecology theory frequently
assumes that all individuals have equal decision-making abilities, but decision
theory relaxes this assumption and has been tested in human groups. We
summarise relevant theory and argue for its applicability to collective animal
decisions. We consider selective pressure on confidence-weighting in groups
of related and unrelated individuals. We also consider which species and
behaviours may provide evidence of confidence-weighting, paying particular
attention to the sophisticated vocal communication of cooperative breeders.

The Wisdom of the Crowd
It has long been noted that the decisions or estimates of groups can be much more accurate than
those of individuals [1], a fact that has gained renewed interest in recent years [2]. Biologists have
also been inspired by the power of groups, motivating this through the rediscovery of the
Condorcet jury theorem or Condorcet vote (see Glossary) [3,4], a result from 19th Century
decision theory that explains how collective decisions are more accurate than individual ones [5],
supported by experimental tests, for example in the avoidance of replica predators by groups of
fish [6,7]. Other authors have proposed that the Condorcet theorem may be applicable to more
sophisticated group decision-making processes, such as house-hunting by honeybee colonies
[4] (but see [8,9]). Nevertheless the Condorcet theorem as typically applied makes a very strong
simplifying assumption – that all decision-makers are equal in their decision-making abilities.
Inhomogeneity in biological systems is the rule, however, both through inter-individual differences
but also through variations in the quality of information individuals have available to them, which
has an inevitable impact on individual decision accuracy. Results have been derived for the case
where individual decision-makers vary in their decision-making ability, both in terms of average
decision-makerability [10]and in termsofoptimal rules forcombining decisions in inhomogeneous
groups by confidence weighting [11]. While such results have gained traction in the human
behavioural sciences [12,13], and have been noted by authors writing for an animal behaviour
audience [4,14], we argue that their applicability to animal behaviour has not been considered in
the detail they deserve. We rectify this omission here, reviewing and generalising the relevant
theory. We also consider the crucial questions for animal behaviour – how and under what
circumstances should honest integration of decision-maker confidence in animal groups be
stable. This perspective is distinct from earlier theoretical and empirical investigations into
variability in factors such as energetic need [15], boldness [16], intrinsic leadership [17], and
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Glossary
Accuracy: the probability that a
decision-maker will make a correct
response. If error costs are the same
regardless of the true state of the
world, then expected accuracy
across states of the world should be
optimised. However, if error costs
differ then optimal accuracies for
different states of the world should
differ (see signal detection theory).
Condorcet vote: a decision in
which a group consensus decision is
determined by a simple majority vote
(at least half of the decision-making
population) (see confidence-weighted
vote).
Confidence-weighted vote: a
decision in which a group consensus
decision is determined by integrating
the individual decisions of group
members, weighted by their
subjective confidence. Confidence-
weighted votes can be determined
by a submajority (less than half of the
decision-making population) (see
Condorcet vote).
Consensus decision: a group
decision in which all group members
prefer to implement the same
decision. For example, the response
to possible predator sightings by a
foraging group could be considered
a consensus decision because if a
predator is absent all members
would rather forage than flee and
abandon foraging opportunities to
groupmates, whereas if a predator is
present all members would rather
remain with the group to minimise
individual predation risk.
Correct decision: in a binary
decision, either a true positive or true
negative.
Drift-diffusion model (DDM): a
speed [18], which do not a priori correlate with quality of information about the true state of the
world. Our intention is thus to motivate further interest among animal behaviour experimentalists in
the communication occurring within groups during group decision-making.

Optimising Group Decisions
Optimal decision theory is concerned with maximisation of expected payoff from decisions or,
equivalently, minimisation of expected loss. The expected loss is an economic concept that is
well known in behavioural biology, for example in the application of signal detection theory to
animal behaviour (e.g., [19,20]). As detailed in supplemental information online, minimising the
expected loss requires that the prior probabilities of different states of the world are taken into
account, as well as the costs and benefits of different decision outcomes, such as true
positives or false negatives, under each of these states. An optimal decision-maker min-
imises expected loss, everything else being equal.

If the decision-maker is a group, then the expected accuracy is a function of the accuracies of all
group members, whose contributions to the group decision may be weighted in some way (Box
1). Assuming that individuals cannot change how good they are at making decisions (their
accuracies), group decision performance may still be improved by weighting their contributions
in an appropriate manner (Box 2). Mathematically there are two equivalent scenarios: an
individual signals the weight their vote should have, or groupmates weight it when integrating
the votes of their fellow group members. In the following and in the supplemental information
online we discuss the derivation, without loss of generality, as if individuals may seek optimally
to weight their contribution to the group decision by choosing a weighting rule that minimises
the group's expected loss from decisions. In the concluding section we return to which of the
two scenarios is more likely under different biological conditions.

When Confidence-Weighting Pays
Confidence-weighting clearly requires additional behavioural and communication machinery
beyond simple communication of individual decisions, and this will be costly. To determine
when confidence-weighting (see Confidence-weighted vote) will be selectively advanta-
geous it is necessary to consider when it will have the greatest benefits. Reasoning about this is
fairly straightforward. In smaller groups the wisdom-of-the-crowd effect is relatively weak,
leaving greater potential for group accuracy to be improved by the most accurate individual
decision-makers dominating the group [21]. When group members tend to vary widely in their
decision accuracy there is again more potential for improvement at the group level by privileging
the contributions of the more-accurate members to the group decision. In addition, increasing
statistically optimal decision-making
model that optimises the
compromise between decision speed
and accuracy (Box 3).
Error costs: costs arising from
correct responses and error
responses under different states of
the world, where an error response
is an incorrect decision outcome; in
a binary decision either a false
negative or a false positive. An
optimal decision-maker seeks to
minimise expected cost, everything
else being equal (see signal detection
theory).
Error rate: the probability of a
decision-maker making an incorrect
response (1 � accuracy).

Box 1. Group Consensus from Weighted Votes

We can define the consensus decision of a group, reached by combining the individual decisions of constituent group
members, as:

HðxÞ ¼
X
i

aihiðxÞ ½I�

where hi is the decision of the ith group member as to whether the state of the world is ‘positive’ or ‘negative’ (i.e.,
hi 2 {�1, + 1}), and ai is a weight that individual puts on their decision (Box 2). In other words, the decision of a group is a
weighted sum of the decisions of its constituent members. Note that positive and negative are simply arbitrary labels we
assign to the two possible states of the world, such as predator present and predator absent. We define the correct
classification c(x) 2 {�1, + 1} to be �1 if the state of the world is negative, and +1 otherwise, and the hypothesis of a
group, H(x) < 0 or H(x) > 0, to indicate their belief about the state of the world (negative or positive respectively); thus the
decision of the group is given by the sign of Equation I. The expected accuracy of the group is simply the probability that
the sign of Equation I equals the sign of the true state of the world c(x), or

EðaccuracyÞ ¼ PðcðxÞHðxÞ > 0Þ: ½II�

In addition, note that the computation of the group decision need not be centralised; Equation I can be computed
independently by all members of a group who are communicating with each other.
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Error response: an incorrect
decision outcome; in a binary
decision either a false negative or
false positive.
False negative: failure to detect a
positive signal, such as failing to
detect a predator that is present.
Also referred to as a ‘miss’ in signal
detection theory.
False positive: erroneous detection
of a positive signal, such as
detecting a predator when none is
present. Also referred to as a false
alarm in signal detection theory.
Log-odds ratio: the logarithm of the
decision accuracy divided by
decision error rate; can be calculated
based on evidence accumulated and
elapsed decision time for a drift-
diffusion model decision-maker (Box
3).
Signal detection theory: theory
prescribing how to set decision
criteria to minimise expected error
costs (see Supplemental Information).
Simple majority decision: a
consensus decision reached based
on the decisions of at least half the
group members, as in a Condorcet
vote.
Subjective confidence: a measure
related to the statistical confidence
an individual has in their own
decision, or that other individuals
have in the decisions of a focal
individual. Optimally defined as the
log-odds ratio when used in a
confidence-weighted voting scheme.
Submajority decision: a consensus
decision reached based on the
decisions of less than half the group
members; this can occur under a
confidence-weighted voting scheme
(Boxes 1 and 2) when a minority of
group members have sufficiently high
subjective confidence.
True negative: correct detection of
a negative signal, such as not
detecting a predator when none is
present. Also referred to as a
‘correct rejection’ in signal detection
theory.
True positive: correct detection of a
positive signal, such as detecting a
predator that is present. Also
referred to as a ‘hit’ in signal
detection theory.
the mean of the accuracy distribution of the group members reduces the improvements that are
possible from optimal weighting because of the rapid increase in group accuracy as individual
decision accuracy increases under the simple Condorcet jury scheme (e.g., [3]), limiting the
potential for further improvement by weighting votes.

The above reasoning shows that situations in which small groups of relatively poorly informed
individuals share information, and where there is variation in either individual decision-making
ability or access to information, should prove particularly suitable for evaluating the theory
presented here. Existing models of anti-predator vigilance, for example, assume that one or few
individuals are well-informed about the approach of a predator [22]. Earlier authors have
adapted the theory we present here but applied it instead to individuals weighting cues by
their accuracy in a social learning and decision-making context [14]. These authors suppose
that when multiple individuals receive the same stimulus then observations will be correlated
rather than independent, and opinion-pooling will not be effective [14]. However, we argue that
even if multiple individuals observe the same stimulus then individual perceptual noise, for
example if all individuals independently applied signal detection theory, would still lead to
independent observations that could be combined to improve overall group accuracy.

Implementing Confidence-Weighting
How should individuals assess and communicate the quality of their own decision-making? In
the simplest case individuals may be assumed to have access to their own decision accuracy,
defined as probability of correctly identifying the true state of the world. This accuracy may
optionally be conditioned on the state of the world when there are asymmetric costs from errors
in each state of the world, for example if the cost of failing to detect a predator is high compared
with detecting a predator that is not actually there, or when different states of the world are not
equally likely, such as when the prior probability of a predator being present is much lower than
the probability that it is absent. Individuals could estimate their accuracy over several obser-
vations in a frequentist or even, if armed with an appropriate prior, Bayesian manner, provided
that they could also eventually observe the true state of the world. This may be possible during
development, when juveniles for example may not contribute to group decisions but may
represent an internal decision and then compare that against the eventual outcome (but see
[14] for the subtleties of learning within groups). However, this estimation process could be
metabolically costly, and benefits may still be realised by more or less principled heuristics for
evaluating certainty in decisions. For example, if individual decision-makers integrate evidence
over time according to a drift-diffusion process – a reasonable assumption because this
optimises the speed–accuracy trade-off inherent in decision-making – and if evidence quality
is variable, then time taken to reach a decision can be used as a proxy for the probability that the
decision reached was the correct decision [23] (Box 3). Kepecs and colleagues also found
that rats presented with ambiguous stimuli waited longer for rewards in error trials than when
presented with unambiguous stimuli [24]. Hesitancy in reaching a decision could readily be
evaluated by individuals, and observers, in evaluating the probability of a correct decision.

In simpler decision scenarios, while it is somewhat complex to derive the optimal weighting rule
from individual accuracy (see Figure I in Box 2), benefits may still be had by implementing
simpler confidence-weighting heuristics. For example, even a simple linear weighting scheme
would provide benefits over no weighting at all. Similarly there is no requirement for negative
confidence weightings (see Figure I in Box 2), which may arise for asymmetric but not for
symmetric error costs (see Supplemental Information); any affine transformation of vote
weightings, adding to and multiplying by the same constants, will leave the group vote
unchanged.
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Box 2. Optimal Confidence-Weighting of Votes

If individuals can evaluate their individual decision accuracy, then an optimal weighting for their contribution to the group
decision (Box 1) can be derived [26,52]. If the expected decision accuracy of individual i is ai, then as shown in the
supplemental information online this optimal weighting is

a�
i /� ln

ai
1 � ai

� �
; ½I�

which is the well-known optimal weighting rule from decision theory [26] and machine learning [52]. This optimal
confidence-weighting is illustrated in Figure I.

Equation I is optimal under the assumption that the costs of errors and correct classifications are the same under both
possible states of the world, as shown in the supplemental information online. However, in realistic decisions the
consequences of errors can be asymmetric; failing to detect a predator is far more costly than stopping foraging to run
away from a non-existent predator, for example. As also shown in the supplemental information online a more general
form of Equation I can be derived when this assumption is relaxed.

Figure I. Optimal Confidence-Weighting. Optimal confidence-weighting parameter a* as a function of individual
decision-accuracy a based on Equation I. Note that the contribution of an individual to the group decision should be
negatively weighted if its decision accuracy is less than chance (1/2). Note, however, that the overall expected accuracy
should not fall below 1/2 for the special case of equal costs for errors under positive and negative states of the world,
because if it did the decision-makers could merely reverse their decisions to improve their overall expected accuracy,
and thus reduce their expected loss.
Optimal Confidence-Weighting in Humans
To date, tests of the theory have been limited to groups of humans whose highly developed
communication and cooperation abilities are obviously sufficient to signal and integrate confi-
dence in reaching a consensus decision. A classic study considers group signal detection
tasks in groups of up to seven human subjects, studying the deviation from statistically optimal
group decision-making as a function of group size [25]. The authors’ ideal model, which also
improves over Condorcet voting, assumes that individuals combine weighted estimates of a
quantity and compare the aggregate value against an optimal decision criterion to determine a
binary decision outcome. This is in contrast to optimal combination of the individual weighted
binary votes, which has lower communication requirements, and hence their ideal weighting
rule differs from that presented here (Box 2). More recently studies have focussed on dyadic
interactions in which individuals are assumed to share a nonlinear function of their estimated
accuracy [12,13]. For groups of size two this ‘maximum-confidence-slating’ algorithm is
equivalent to the algorithm presented here. Note that communicating misleading subjective
confidences can lead to worse decisions by groups than by individuals [13]; this result should
not apply to our argument where we assume that individuals are able correctly to estimate their
Trends in Ecology & Evolution, September 2017, Vol. 32, No. 9 639



own or their groupmates’ confidence. Subsequently, drawing inspiration from [26], the optimal
weighting rule presented here for symmetric costs of errors (Box 2) has been applied to post
hoc virtual groups of clinicians for medical diagnoses, resulting in an improvement in group
diagnosis accuracy [27].

Confidence-Weighting in Non-Human Animals
We argue that collective motion, and vocal communication among cooperative breeders, may
prove fruitful avenues for empirical investigation in non-human animals. In cooperative trans-
portation by ants, a recent model has been advanced by which sharing of confidence may
improve transportation efficiency [28]; note, however, that in this model, unlike ours, individuals
do not vary in their information nor in their ability to process it, hence this model does not
correspond to ours. In collective motion, an influential model of target selection by mixtures of
informed and uninformed individuals shows how an informed minority can guide an uninformed
majority to their preferred target [29]. A key parameter in this model is the relative weight
individuals place on their preferred target vector and their desire to remain in proximity to and
aligned with their groupmates. This is similar to hesitancy in our proposal above (Box 3),
because an individual with weak information about where to go could down-weight its preferred
target vector, thereby taking more account of the preferred directions of neighbouring group-
mates. While the theory presented here is optimal for binary decisions, further theoretical
consideration should be given to optimal confidence-weighting mechanisms for continuous or
multi-hypothesis decisions.

Selective Pressures on Confidence-Weighting Mechanisms
What mechanisms should groups use to weight individual decisions? If the individuals within the
group in question have sufficiently aligned fitness interests, then they may experience selection
Box 3. Optimal Confidence-Weighting from Optimal Individual Decisions

Statistically optimal binary decision-making, that gives the best possible compromise between speed and accuracy of
decision-making, can be realised by individuals using the drift-diffusion model (DDM) of decision-making [51]

_x ¼ m þ sh ½I�

where _x is the rate of change over time of a decision variable x, which changes under a constant drift m but also
diffuses under a (white-noise) Wiener process h with standard deviation s and mean 0. The equal evidence point is
x = 0, and evidence typically accumulates until a positive or negative decision threshold is reached. Thus the DDM
models evidence accumulation as a process of Brownian motion along a line with a constant tendency m, that is
proportional to stimulus signal to move towards the correct decision boundary, and a constant standard deviation
s, that is proportional to stimulus noise. The DDM achieves the minimum possible expected decision time for a
decision with a desired expected error rate, achieved by varying the decision thresholds. The DDM can be applied
to many problems of animal behaviour, for example, predator vigilance during foraging [20].

It can be shown [23] that the log-odds ratio that a decision is correct given the signal (m) is positive

log
Pðhmi > 0jxðtÞÞ
Pðhmi < 0jxðtÞÞ ½II�

can be easily derived for the DDM (see supplemental information online). Here P(hm i >0|x(t)), for example, is the
probability that the estimated sign of the drift coefficient, representing the decision, is positive, given the value of the
decision variable x at time t.

If information quality is variable, so multiple possible absolute values of m might be experienced by a decision-maker,
then the log-odds ratio is a function of the value of the decision variable x over time (Figure I).

The log-odds ratio of Equation II is, of course, exactly the same as the optimal weighting rule of Equation I in Box 2
because we assumed that m > 0, and therefore

log
Pðhmi > 0jxðtÞÞ
Pðhmi < 0jxðtÞÞ ¼ log

PðcorrectjxðtÞÞ
PðerrorjxðtÞÞ ¼ log

aðx; tÞ
1 � aðx; tÞ ½III�
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where a (x,t) is decision accuracy as a function of current decision variable and elapsed decision time. Thus the optimal
weighting for an optimal individual decision-maker can be computed and, for a fixed decision criterion, evolves in a
simple manner over time (Figure IB).

Figure I. Optimal Confidence-Weighting from Optimal Decision-Making. When the quality of the available
information is uncertain a decision-maker using the statistically optimal drift-diffusion decision model (DDM) can
calculate the log-odds ratio of being correct based on time t since decision commencement, and the observed value
of an internal decision variable X [23] (A). The log-odds ratio corresponds to the optimal weighting rule based on
individual decision accuracy Box 2, Equation I described in the main text, as derived in the supplemental information
online. For constant decision variable X the relationship between decision time elapsed and log-odds ratio is
straightforward (B). For both plots the decision-maker has, with equal probability, one of two drift rates (m1 = 0.5
or m2 = 0.1), and unit standard deviation s. For both plots the correct decision is uncorrelated with the drift rate
experienced.
to communicate honestly the weighting that they judge their vote should have. Such a situation
would be likely in a colony of eusocial insects, for example. However, in unrelated groups
individual fitness interests will not usually be aligned with those of groupmates. While it may be
in the interests of an individual that the group correctly identifies the presence of a predator, for
example, to be able to flee while benefitting from a dilution [30] or confusion effect [31], it could
also be in the interests of an individual to cause a foraging group to flee when no predator is
present, allowing the signaller free access to abandoned food items. Such kleptoparasitism
through manipulative alarm calls is observed between species (e.g., [32,33]), and in an
intraspecific context signalling increased confidence in a decision could enable an individual
Trends in Ecology & Evolution, September 2017, Vol. 32, No. 9 641



to manipulate group members. Hence in such groups confidence-weighting would be less
attended to by groupmates [34]. By contrast, inferring the accuracy or reliability of groupmates
may be feasible, and because each individual must ultimately determine what they think the
Figure 1. Many Cooperative Breeders Exhibit Sophisticated Vocal Communication. As described in the main
text, (A) Pied babblers (Turdoides bicolor) negotiate vocally over the sharing of cooperative tasks; (B) green woodhoopoes
(Phoeniculus purpureus) use vocalisations to mediate group movement decisions; (C) meerkats (Suricata suricatta) make
vigilance decisions based on vocal information from groupmates; and (D) dwarf mongooses (Helogale parvula) assess the
need for personal vigilance depending on identity information contained within vocal signals. Photo credits: (A) Andrew
Radford, (B) Chris van Rooyen, (C) James Marshall (reproduced from [53] with permission from Princeton University Press),
(D) Shannon Benson.
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Outstanding Questions
Do animals account for decision reli-
ability when signalling to, or integrating
signals from, groupmates?

Does confidence weighting shift from
signallers in highly related groups to
signal receivers in unrelated groups?

Do animals approximate the optimal
confidence-weighting strategy?

What confidence-weighting strategies
are optimal or effective for continuous
and multihypothesis decisions?

Do animals use hesitancy as a cue for
inferring confidence in their own or
others’ decisions?
group has decided on, weighting votes by groupmates according to their perceived accuracy
as part of this integration could be a stable strategy.

Testing the Theory in Non-human Animals
For vocal communication in non-human animals (Figure 1) there is good evidence that individuals
can alter their responses to anti-predator vocalisations depending on the perceived reliability of
groupmates [35,36]. Differences in reliability may arise because of variation in inherent character-
istics such as age, dominance status, or individual ability [37,38], the use of false calls for
kleptoparasitic purposes as discussed immediately above [39], or as a consequence of external
factors such as the height adopted by individuals scanning for dangers as raised guards [40]. In
principle, it is therefore plausible that, on hearing calling by multiple individuals, receivers willweight
those calls bytheir perceived reliability when making a decision. In thecase ofalarmcalls, however,
there maysimply not be enough time to make such nuanced judgements; therewill be selection for
rapid responses to warnings of danger [20], and individual variation in alarm calls has been shown
not to be taken into account by receivers in at least some cases [41]. Perhaps more likely would be
weighted judgements in situations where there is more time available for decision-making. For
instance, when deciding whether and where to move next, how much vigilance to conduct, and
how much to contribute to shared activities. In cooperative vertebrates these decisions are often
mediated by vocalisations (movement [42,43]; vigilance [44,45]; negotiation over cooperation
[46]), and such vocalisations often carry class- or individual-specific information [37,47]. Future
work could therefore profitably use playback experiments to explore how group decisions are
affected by variation in reliability in these different contexts.

Relating Accuracy Variation with Variability in Other Traits
In this review we have focussed on the application of decision theory based on variation in
individual decision-making ability or quality of evidence. An increasing amount of work has studied
variation within animal groups and how this translates to leadership [15–18]. Further work may be
undertakentorelatesuchvariability tovariation indecision-making quality [48], andtherelationship
between ‘personality’ and ‘swarmintelligence’ has been notedtohavereceived little attention [49].
For example, while leadership in pairs of pigeons may correlate with experience [50], Pettit et al.
find that in larger flocks it is the faster pigeons who become leaders, even though they are not
necessarily the more efficient navigators [18]; however, subsequently they become superior
navigators, probably because of increased relative attentiveness during navigation [18]. This
may be a feature of decision-making during collective motion where a minimum speed is required
because of physiological constraints; where such constraints are uncorrelated with decision-
quality they become a confound. Note that variation in subjective variables such as hunger or
intrinsic leadership is outside the scope of the theory presented here [15,17] which focusses on
honest confidence-weighting either by signallers or signal recipients.

Concluding Remarks
We have argued here that variation in individual decision-making ability in animal groups has
received insufficient theoretical attention, and have surveyed relevant decision-theoretic models.
We have also considered which species and behaviours may provide the most fertile testing-
grounds for such theory, focussing primarily on vocal communications in groups of cooperative
breeders. Recently there has been greatly increased attention to within-group variation in a variety
of traits relating to group decisions, such as boldness and leadership, to take only two examples;
we feel, however, that a quantitative, optimality-based approach to optimising group decisions
when individuals vary in their decision-making ability offers a complementary perspective.

In conclusion, group decisions can be improved by even relatively simple strategies for
weighting contributions to group decisions according to individual decision accuracies; this
Trends in Ecology & Evolution, September 2017, Vol. 32, No. 9 643



point may not have been adequately appreciated by researchers into collective animal behav-
iour before now, and we hope that this Opinion will motivate further empirical and theoretical
investigation (see Outstanding Questions).
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